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< Model-based AI >

• Typical data processing setting:
• We observe a large number of correlated variables, explained by a small number of

independent factors.

There are two complementary approaches to handle this situation:

• Signal processing
• Model based
• Large bias
• Low complexity

• ML/AI
• Data based
• Low bias
• High complexity

Hybrid approach: Model-based AI
Use models to structure, initialize and train learning methods

• Make models more flexible: reduce bias of signal processing methods
• Guide machine learning methods: reduce their complexity
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< Location-to-channel mapping >

• In a SISO-monocarrier setting, the channel can be expressed as:

• Hypothesis: attenuation/phase proportional to propagation distance

h (x) =

Lp∑
l=1

αle
jβl

dl
e−j 2π

λ
dl (1)

=

Lp∑
l=1

αle
jβl

∥x− xl∥2
e−j 2π

λ
∥x−xl∥2 (2)
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< Location-to-channel mapping >

• How to learn the location-to-channel mapping ?

• Use of the Implicit Neural Representation (INR) concept:
• Neural networks are universal function approximators
• Using x, one can design and train a neural network in a supervised manner to learn a

representation of h (x)

• Goal: learn
fθ : R2 −→ C

x −→ h (x) ,
(3)

How to efficiently learn fθ (x) ?
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< Spectral bias >

• Classical architecture (MLPs) are biased towards learning low frequency content1,2

h (x) =

Lp∑
l=1

αle
jβl

∥x− xl∥2
e−j 2π

λ
∥x−xl∥2 (4)

• High frequency spatial dependence due to the exponential argument: small change
in x leads to a huge change in h (x) → on the order of the wavelength

How to learn fθ (x) without suffering from the spectral bias ?

1Rahaman et al., “On the spectral bias of neural networks”.
2Cao et al., “Towards Understanding the Spectral Bias of Deep Learning”.
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< Contributions >

• Derive a model-based architecture for the location-to-channel mapping
learning

• Where the model does not have to learn high frequency spatial content
• Show that this model-based approach overcomes the spectral bias, and successfully

learns the location-to-channel mapping
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< Overcoming the spectral bias >

• The mapping is hard to learn due to the high frequency spatial content

• Idea: split high frequency from low frequency spatial content with a Taylor
expansion

• Around a reference point xr ∈ R2:

∥x− xl∥2 ≃ ∥xr − xl∥2 + u(xr−xl) · (x− xr) (5)
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expansion
• Around a reference point xr ∈ R2:

∥x− xl∥2 ≃ ∥xr − xl∥2 + u(xr−xl) · (x− xr) (5)

• This yields:

h (x) ≃
Lp∑
l=1

αle
jβlhl (xr) e

j 2π
λ
u(xr−xl)

·xr

1 +
u(xr−xl) · (x− xr)
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h (x) is locally approximated as a linear combination of planar wavefronts
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< From local to global spatial validity >

• Taylor expansion only valid locally

The local planar approximation becomes global with a well-chosen dictionary
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< From local to global spatial validity >

• Taylor expansion only valid locally

• One needs a set of spatial frequencies per hexagon:

• Ψ (x) = {ψi (x)}Di=1 =
{
e−jki·x

}D
i=1

: dictionary containing well-chosen planar wavefronts
• Can be constructed by sampling the unit circle with D spatial frequencies

• w (x) ∈ CD: location-dependent activation vector

∀x ∈ R2, h (x) ≃
D∑
i=1

wi (x)ψi (x) , (7)

with ∥w (x)∥0 = Lp

The local planar approximation becomes global with a well-chosen dictionary

Public Distribution 7 / 14



< From local to global spatial validity >

• Taylor expansion only valid locally

• One needs a set of spatial frequencies per hexagon:
• Ψ (x) = {ψi (x)}Di=1 =

{
e−jki·x

}D
i=1

: dictionary containing well-chosen planar wavefronts

• Can be constructed by sampling the unit circle with D spatial frequencies
• w (x) ∈ CD: location-dependent activation vector

∀x ∈ R2, h (x) ≃
D∑
i=1

wi (x)ψi (x) , (7)

with ∥w (x)∥0 = Lp

The local planar approximation becomes global with a well-chosen dictionary

Public Distribution 7 / 14



< From local to global spatial validity >

• Taylor expansion only valid locally

• One needs a set of spatial frequencies per hexagon:
• Ψ (x) = {ψi (x)}Di=1 =

{
e−jki·x

}D
i=1

: dictionary containing well-chosen planar wavefronts
• Can be constructed by sampling the unit circle with D spatial frequencies

• w (x) ∈ CD: location-dependent activation vector

∀x ∈ R2, h (x) ≃
D∑
i=1

wi (x)ψi (x) , (7)

with ∥w (x)∥0 = Lp

The local planar approximation becomes global with a well-chosen dictionary

Public Distribution 7 / 14



< From local to global spatial validity >

• Taylor expansion only valid locally

• One needs a set of spatial frequencies per hexagon:
• Ψ (x) = {ψi (x)}Di=1 =

{
e−jki·x

}D
i=1

: dictionary containing well-chosen planar wavefronts
• Can be constructed by sampling the unit circle with D spatial frequencies

• w (x) ∈ CD: location-dependent activation vector

∀x ∈ R2, h (x) ≃
D∑
i=1

wi (x)ψi (x) , (7)

with ∥w (x)∥0 = Lp

The local planar approximation becomes global with a well-chosen dictionary

Public Distribution 7 / 14



< From local to global spatial validity >

• Taylor expansion only valid locally

• One needs a set of spatial frequencies per hexagon:
• Ψ (x) = {ψi (x)}Di=1 =

{
e−jki·x

}D
i=1

: dictionary containing well-chosen planar wavefronts
• Can be constructed by sampling the unit circle with D spatial frequencies

• w (x) ∈ CD: location-dependent activation vector

∀x ∈ R2, h (x) ≃
D∑
i=1

wi (x)ψi (x) , (7)

with ∥w (x)∥0 = Lp

The local planar approximation becomes global with a well-chosen dictionary

Public Distribution 7 / 14



< From local to global spatial validity >

• Taylor expansion only valid locally

• One needs a set of spatial frequencies per hexagon:
• Ψ (x) = {ψi (x)}Di=1 =

{
e−jki·x

}D
i=1

: dictionary containing well-chosen planar wavefronts
• Can be constructed by sampling the unit circle with D spatial frequencies

• w (x) ∈ CD: location-dependent activation vector

∀x ∈ R2, h (x) ≃
D∑
i=1

wi (x)ψi (x) , (7)

with ∥w (x)∥0 = Lp

The local planar approximation becomes global with a well-chosen dictionary

Public Distribution 7 / 14



< Neural architecture >

• Main idea: for a given input location x ∈ R2

• From fixed spatial frequencies {ki}Di=1 compute Fourier features
{
e−jki·x

}D
i=1• Compute the associated complex weights w (x), with the sparsity constraint
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< Learning framework >

• Channel generation:

• f0 = 3.5GHz
• Synthetic, with hand-placed virtual

sources
• Ray-tracing (Sionna) in Paris

• Locations generation:
• 10m by 10m square scene
• Train/test locations randomly dropped

in the scene with a certain spatial
density

• Evaluation locations: λ/4 uniform grid
• Train loss:

L = E
[
∥fθ (x)− h (x)∥22

]
,x ∈ D ⊂ R2, (8)

with D: batch locations set
• Evaluation metric:

NMSE = 10 log10

(
∥h (x)− fθ (x)∥22

∥h (x)∥22

)
,x ∈ E ⊂ R2 (9)

with E : evaluation locations set
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< Baselines >

• 1. MLP, 2. RFF, 3. RFF lin.

Public Distribution 10 / 14



< Results: scene reconstruction >

• Synthetic channels, Lp = 6 propagation paths
• Train loc. density: 100locs./m2 ≃ 0.7 locs./λ2
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< Results: scene reconstruction >
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Public Distribution 12 / 14



< Results: scene reconstruction >

• Ray-tracing channels, Lp = 11 propagation paths
• Train loc. density: 150locs./m2 ≃ 1.1 locs./λ2

MLP RFF RFF lin. Proposed

Params. 16.8M 33.1M 4k 0.5M

NMSE(dB) 0.14 −2.41 −2.21 −23.41

Public Distribution 12 / 14



< Results: scene reconstruction >
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< Results: scene reconstruction >

• Synthetic channels, variable training loc. density, variable propagation path number

• For each point: 100 training with random virtual sources
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< Conclusion >

• Contributions:

• Derive a model-based neural network to learn the location-to-channel mapping
• Show that the proposed model-based architecture allows to overcome the spectral bias
• Better performance than baselines, with less training parameters

• Future work:
• Adapt the architecture to a more realistic scenario: multi-antenna/multicarrier

• Link to paper: https://arxiv.org/pdf/2308.14370.pdf
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