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< Evolution of telecom. systems >

The dimension of channels increases
• Consequences:

• Channels are more and more difficult to estimate
• Channels contain more and more information
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< Model-based AI >

• Typical data processing setting:
• We observe a large number of correlated variables, explained by a small number of

independent factors.

There are two complementary approaches to handle this situation:

• Signal processing
• Model based (analytical description of

the manifold)
• Large bias
• Low complexity

• Machine learning/Artificial
intelligence

• Data based (sampling of the manifold)
• Low bias
• High complexity

Hybrid approach: Model-based AI
Use models to structure, initialize and train learning methods

• Make models more flexible: reduce bias of signal processing methods
• Guide machine learning methods: reduce their complexity
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< Application >

Resilient channel estimation
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< LS estimate >

• Orthogonal pilot sequences: sHi sj = δi,j
• Signal due to the k-th UE: Qk = hks

T
k

• Full observation at the BS: Q =
K∑
k=1

Qk +W

• LS estimate: xi = Qs∗i = hi + n ∈ CN

How to denoise the channels ?
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< Physical model >

• The BS has noisy estimates of the channels: x = h+ n, n ∼ CN
(
0, σ2Id

)
The physical model allows to denoise.
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< Impact of imperfections >

• The physical model can’t be perfectly known:

• Plane wave assumption → Only good for large distances
• Antenna positions and gains are not exactly known, same for subcarriers frequencies.

• Impact on channel denoising:

How to counter this performance loss ? Use of a neural network
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< mpNet presentation >

• Unsupervised, online, SNR-adaptive neural network. Based on the Deep-Unfolding1

approach.

• MP algorithm (one iteration):

1. Correlation : ΨHx
2. Argmax search : i⋆ = argmaxi

∣∣ψH
i x

∣∣
3. Projection : ĥ = ψi⋆ψ

H
i⋆x

• mpNet:

• Model-based AI: MIMO channel estimation Yassine2022, SISO-OFDM (this paper),
MIMO-ISAC mateosramos2022modeldriven,
MIMO-OFDM-ISAC-Multi-target mateosramos2023.

1Balatsoukas-Stimming and Studer, “Deep Unfolding for Communications Systems: A Survey and Some New
Directions”.

May 30, 2023 Public Distribution 7 / 15



< mpNet presentation >

• Unsupervised, online, SNR-adaptive neural network. Based on the Deep-Unfolding1

approach.

• MP algorithm (one iteration):

1. Correlation : ΨHx
2. Argmax search : i⋆ = argmaxi

∣∣ψH
i x

∣∣
3. Projection : ĥ = ψi⋆ψ
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H
i⋆x

• mpNet:

• Model-based AI: MIMO channel estimation Yassine2022, SISO-OFDM (this paper),
MIMO-ISAC mateosramos2022modeldriven,
MIMO-OFDM-ISAC-Multi-target mateosramos2023.

1Balatsoukas-Stimming and Studer, “Deep Unfolding for Communications Systems: A Survey and Some New
Directions”.

May 30, 2023 Public Distribution 7 / 15



< mpNet presentation >

• Unsupervised, online, SNR-adaptive neural network. Based on the Deep-Unfolding1

approach.

• MP algorithm (one iteration):

1. Correlation : ΨHx
2. Argmax search : i⋆ = argmaxi

∣∣ψH
i x

∣∣
3. Projection : ĥ = ψi⋆ψ
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i⋆x

• mpNet:

• Model-based AI: MIMO channel estimation2, SISO-OFDM (this paper ),
MIMO-ISAC3, MIMO-OFDM-ISAC-Multi-target4.

1Balatsoukas-Stimming and Studer, “Deep Unfolding for Communications Systems: A Survey and Some New
Directions”.

2Yassine and Le Magoarou, “mpNet: variable depth unfolded neural network for massive MIMO channel estimation”.
3Mateos-Ramos et al., “Model-Driven End-to-End Learning for Integrated Sensing and Communication”.
4Mateos-Ramos et al., “Model-Driven End-to-End Learning for Multi-Target Integrated Sensing and Communication”.
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Contributions
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< Contributions >

• Constrained dictionaries:

• Reducing the number of learning parameters
• Without harming the model learning capabilities

• Hierarchical atom search:
• Exhaustive search over large dictionaries is computationally heavy
• Speed-up the search of the most-correlated atom
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< Constrained dictionary >

• High number of learning parameters: long training time. How to reduce the learning
parameters number ?

• Non-constrained vs. constrained dictionary:

W =

w1,1 · · · w1,A
...

. . .
...

wN,1 · · · wN,A

 ∈ CN×A (1)

⋄
W =


g1e

−j2π(f1−N
2
δf)τ1 · · · g1e

−j2π(f1−N
2
δf)τA

...
. . .

...
gNe−j2π(fN+N

2
δf)τ1 · · · gNe−j2π(fN+N

2
δf)τA

 ∈ CN×A (2)

• From 2NA parameters to 2N + 1 parameters to learn
• Example: N = 256 subcarriers and A = 990 atoms ⇒ 506, 880 to 513 parameters

Learning parameter number is independent of the number of atoms
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< Hierarchical atom search >

• Currently, correlation of the whole dictionary with the residual and argmax search.
• Computationally intensive: How to speed up the process ?

• New idea: Use a hierarchical approach.

Correlation number is divided by A
2 log2(A)
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< Application >

Empirical results
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< Simulation configuration >

• DeepMIMO configuration
• f0 = 3.4GHz
• BW = 50MHz
• N = 256 subcarriers
• Variable SNRin

• Imperfection models:
• SCO: fi = f̃i + iδf
• Gain imperfection: gi = g̃i + ngi , ngi ∼ N

(
0, σ2

g

)
• Online (minibatch) learning

• 10 channels per batch
• 2000 test channels
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< Training results >

• DeepMIMO channels @3.4GHz, N = 256 subcarriers

0 5 10 15 20 25

Number of seen channels (*20)

0.05

0.10

0.15
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< Conclusion >

• Contributions:
• Sample complexity reduction: constrained dictionaries
• Time complexity reduction: hierarchical search

• Link to paper: https://arxiv.org/pdf/2210.06588.pdf or QR-code:
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Thank you!
Have you got any questions?



Thanks


