E

/ Online Unsupervised Deep Unfolding for SISO-OFDM channel estimation /

Baptiste CHATELIER ${ }^{\dagger, \ddagger, \uparrow, \star}$, Luc LE MAGOAROU ${ }^{\dagger}$, Getachew REDIETEAB ${ }^{\S}, \star$
\dagger Univ Rennes, INSA Rennes, CNRS, IETR-UMR 6164, Rennes, France
\ddagger Mitsubishi Electric R\&D Centre Europe, Rennes, France
§ Orange Innovation, Rennes, France
\star b<>com, Rennes, France
baptiste.chatelier@insa-rennes.fr

The dimension of channels increases

The dimension of channels increases

- Consequences:

The dimension of channels increases

- Consequences:
- Channels are more and more difficult to estimate

The dimension of channels increases

- Consequences:
- Channels are more and more difficult to estimate
- Channels contain more and more information
- Typical data processing setting:
- We observe a large number of correlated variables, explained by a small number of independent factors.
- Typical data processing setting:
- We observe a large number of correlated variables, explained by a small number of independent factors.
There are two complementary approaches to handle this situation:
- Typical data processing setting:
- We observe a large number of correlated variables, explained by a small number of independent factors.
There are two complementary approaches to handle this situation:
- Signal processing
- Model based (analytical description of the manifold)
- Large bias
- Low complexity
- Typical data processing setting:
- We observe a large number of correlated variables, explained by a small number of independent factors.
There are two complementary approaches to handle this situation:
- Signal processing
- Model based (analytical description of the manifold)
- Large bias
- Low complexity
- Machine learning/Artificial intelligence
- Data based (sampling of the manifold)
- Low bias
- High complexity
- Typical data processing setting:
- We observe a large number of correlated variables, explained by a small number of independent factors.
There are two complementary approaches to handle this situation:
- Signal processing
- Model based (analytical description of the manifold)
- Large bias
- Low complexity
- Machine learning/Artificial intelligence
- Data based (sampling of the manifold)
- Low bias
- High complexity

Hybrid approach: Model-based AI
Use models to structure, initialize and train learning methods

- Typical data processing setting:
- We observe a large number of correlated variables, explained by a small number of independent factors.
There are two complementary approaches to handle this situation:
- Signal processing
- Model based (analytical description of the manifold)
- Large bias
- Low complexity
- Machine learning/Artificial intelligence
- Data based (sampling of the manifold)
- Low bias
- High complexity

Hybrid approach: Model-based AI
Use models to structure, initialize and train learning methods

- Make models more flexible: reduce bias of signal processing methods
- Typical data processing setting:
- We observe a large number of correlated variables, explained by a small number of independent factors.
There are two complementary approaches to handle this situation:
- Signal processing
- Model based (analytical description of the manifold)
- Large bias
- Low complexity
- Machine learning/Artificial intelligence
- Data based (sampling of the manifold)
- Low bias
- High complexity

Hybrid approach: Model-based AI

Use models to structure, initialize and train learning methods

- Make models more flexible: reduce bias of signal processing methods
- Guide machine learning methods: reduce their complexity

Resilient channel estimation

< LS estimate >

- Orthogonal pilot sequences: $\mathbf{s}_{i}^{H} \mathbf{s}_{j}=\delta_{i, j}$

- Orthogonal pilot sequences: $\mathbf{s}_{i}^{H} \mathbf{s}_{j}=\delta_{i, j}$
- Signal due to the k-th UE: $\mathbf{Q}_{k}=\mathbf{h}_{k} \mathbf{S}_{k}^{T}$

- Orthogonal pilot sequences: $\mathbf{s}_{i}^{H} \mathbf{s}_{j}=\delta_{i, j}$
- Signal due to the k-th UE: $\mathbf{Q}_{k}=\mathbf{h}_{k} \mathbf{s}_{k}^{T}$
- Full observation at the $\mathrm{BS}: \mathbf{Q}=\sum_{k=1}^{K} \mathbf{Q}_{k}+\mathbf{W}$

- Orthogonal pilot sequences: $\mathbf{s}_{i}^{H} \mathbf{s}_{j}=\delta_{i, j}$
- Signal due to the k-th UE: $\mathbf{Q}_{k}=\mathbf{h}_{k} \mathbf{s}_{k}^{T}$
- Full observation at the $\mathrm{BS}: \mathbf{Q}=\sum_{k=1}^{K} \mathbf{Q}_{k}+\mathbf{W}$
- LS estimate: $\mathbf{x}_{i}=\mathbf{Q s}_{i}^{*}=\mathbf{h}_{i}+\mathbf{n} \in \mathbb{C}^{N}$

- Orthogonal pilot sequences: $\mathbf{s}_{i}^{H} \mathbf{s}_{j}=\delta_{i, j}$
- Signal due to the k-th UE: $\mathbf{Q}_{k}=\mathbf{h}_{k} \mathbf{S}_{k}^{T}$
- Full observation at the $\mathrm{BS}: \mathbf{Q}=\sum_{k=1}^{K} \mathbf{Q}_{k}+\mathbf{W}$
- LS estimate: $\mathbf{x}_{i}=\mathbf{Q s}_{i}^{*}=\mathbf{h}_{i}+\mathbf{n} \in \mathbb{C}^{N}$

How to denoise the channels ?

- The BS has noisy estimates of the channels: $\mathbf{x}=\mathbf{h}+\mathbf{n}, \mathbf{n} \sim \mathcal{C N}\left(0, \sigma^{2} \mathbf{I d}\right)$

- The BS has noisy estimates of the channels: $\mathbf{x}=\mathbf{h}+\mathbf{n}, \mathbf{n} \sim \mathcal{C N}\left(0, \sigma^{2} \mathbf{I d}\right)$

The physical model allows to denoise.

- The physical model can't be perfectly known:
- The physical model can't be perfectly known:
- Plane wave assumption \rightarrow Only good for large distances
- The physical model can't be perfectly known:
- Plane wave assumption \rightarrow Only good for large distances
- Antenna positions and gains are not exactly known, same for subcarriers frequencies.
- The physical model can't be perfectly known:
- Plane wave assumption \rightarrow Only good for large distances
- Antenna positions and gains are not exactly known, same for subcarriers frequencies.
- Impact on channel denoising:

- The physical model can't be perfectly known:
- Plane wave assumption \rightarrow Only good for large distances
- Antenna positions and gains are not exactly known, same for subcarriers frequencies.
- Impact on channel denoising:

SNR loss in dB

How to counter this performance loss? Use of a neural network

- Unsupervised, online, SNR-adaptive neural network. Based on the Deep-Unfolding ${ }^{1}$ approach.

[^0]- Unsupervised, online, SNR-adaptive neural network. Based on the Deep-Unfolding ${ }^{1}$ approach.
- MP algorithm (one iteration):

[^1]- Unsupervised, online, SNR-adaptive neural network. Based on the Deep-Unfolding ${ }^{1}$ approach.
- MP algorithm (one iteration):

1. Correlation : $\boldsymbol{\Psi}^{H} \mathbf{x}$
[^2]- Unsupervised, online, SNR-adaptive neural network. Based on the Deep-Unfolding ${ }^{1}$ approach.
- MP algorithm (one iteration):

1. Correlation : $\boldsymbol{\Psi}^{H} \mathbf{x}$
2. Argmax search : $i^{\star}=\arg \max _{i}\left|\boldsymbol{\psi}_{i}^{H} \mathbf{x}\right|$
[^3]- Unsupervised, online, SNR-adaptive neural network. Based on the Deep-Unfolding ${ }^{1}$ approach.
- MP algorithm (one iteration):

1. Correlation : $\boldsymbol{\Psi}^{H} \mathbf{x}$
2. Argmax search : $i^{\star}=\arg \max _{i}\left|\boldsymbol{\psi}_{i}^{H} \mathbf{x}\right|$
3. Projection : $\hat{\mathbf{h}}=\boldsymbol{\psi}_{i^{\star}} \boldsymbol{\psi}_{i^{\star}}^{H} \mathbf{x}$
[^4]- Unsupervised, online, SNR-adaptive neural network. Based on the Deep-Unfolding ${ }^{1}$ approach.
- MP algorithm (one iteration):
- mpNet:

1. Correlation: $\boldsymbol{\Psi}^{H} \mathbf{x}$
2. Argmax search : $i^{\star}=\arg \max _{i}\left|\boldsymbol{\psi}_{i}^{H} \mathbf{x}\right|$
3. Projection : $\hat{\mathbf{h}}=\boldsymbol{\psi}_{i^{\star}} \boldsymbol{\psi}_{i^{\star}}^{H} \mathbf{x}$
[^5]- Unsupervised, online, SNR-adaptive neural network. Based on the Deep-Unfolding ${ }^{1}$ approach.
- MP algorithm (one iteration):

1. Correlation: $\mathbf{\Psi}^{H} \mathbf{x}$
2. Argmax search : $i^{\star}=\arg \max _{i}\left|\boldsymbol{\psi}_{i}^{H} \mathbf{x}\right|$
3. Projection : $\hat{\mathbf{h}}=\boldsymbol{\psi}_{i^{\star}} \boldsymbol{\psi}_{i^{\star}}^{H} \mathbf{x}$

- mpNet:

$$
\mathbf{x}=\mathbf{h}+\mathbf{n} \rightarrow \mathbf{W}^{H} \rightarrow \mathrm{HT}_{1} \rightarrow \mathbf{W} \cdot \hat{\mathbf{h}}
$$

[^6]- Unsupervised, online, SNR-adaptive neural network. Based on the Deep-Unfolding ${ }^{1}$ approach.
- MP algorithm (one iteration):

1. Correlation : $\boldsymbol{\Psi}^{H} \mathbf{x}$
2. Argmax search : $i^{\star}=\arg \max _{i}\left|\boldsymbol{\psi}_{i}^{H} \mathbf{x}\right|$
3. Projection : $\hat{\mathbf{h}}=\boldsymbol{\psi}_{i^{\star}} \boldsymbol{\psi}_{i^{\star}}^{H} \mathbf{x}$

- mpNet:

$$
\mathbf{x}=\mathbf{h}+\mathbf{n} \rightarrow \mathbf{W}^{H} \rightarrow \mathrm{HT}_{1} \rightarrow \mathbf{W} \cdot \hat{\mathbf{h}}
$$

- Model-based AI: MIMO channel estimation ${ }^{2}$, SISO-OFDM (this paper), MIMO-ISAC ${ }^{3}$, MIMO-OFDM-ISAC-Multi-target ${ }^{4}$.

[^7]
Contributions

- Constrained dictionaries:
- Constrained dictionaries:
- Reducing the number of learning parameters
- Constrained dictionaries:
- Reducing the number of learning parameters
- Without harming the model learning capabilities
- Constrained dictionaries:
- Reducing the number of learning parameters
- Without harming the model learning capabilities
- Hierarchical atom search:
- Constrained dictionaries:
- Reducing the number of learning parameters
- Without harming the model learning capabilities
- Hierarchical atom search:
- Exhaustive search over large dictionaries is computationally heavy
- Constrained dictionaries:
- Reducing the number of learning parameters
- Without harming the model learning capabilities
- Hierarchical atom search:
- Exhaustive search over large dictionaries is computationally heavy
- Speed-up the search of the most-correlated atom
- High number of learning parameters: long training time. How to reduce the learning parameters number?
- High number of learning parameters: long training time. How to reduce the learning parameters number?
- Non-constrained vs. constrained dictionary:

$$
\mathbf{W}=\left[\begin{array}{ccc}
w_{1,1} & \cdots & w_{1, A} \tag{1}\\
\vdots & \ddots & \vdots \\
w_{N, 1} & \cdots & w_{N, A}
\end{array}\right] \in \mathbb{C}^{N \times A}
$$

- High number of learning parameters: long training time. How to reduce the learning parameters number?
- Non-constrained vs. constrained dictionary:

$$
\begin{gather*}
\mathbf{W}=\left[\begin{array}{ccc}
w_{1,1} & \cdots & w_{1, A} \\
\vdots & \ddots & \vdots \\
w_{N, 1} & \cdots & w_{N, A}
\end{array}\right] \in \mathbb{C}^{N \times A} \tag{1}\\
\stackrel{\diamond}{\mathbf{W}}=\left[\begin{array}{ccc}
g_{1} e^{-\mathrm{j} 2 \pi\left(f_{1}-\frac{N}{2} \delta f\right) \tau_{1}} & \cdots & g_{1} e^{-\mathrm{j} 2 \pi\left(f_{1}-\frac{N}{2} \delta f\right) \tau_{A}} \\
\vdots & \ddots & \vdots \\
g_{N} e^{-\mathrm{j} 2 \pi\left(f_{N}+\frac{N}{2} \delta f\right) \tau_{1}} & \cdots & g_{N} e^{-\mathrm{j} 2 \pi\left(f_{N}+\frac{N}{2} \delta f\right) \tau_{A}}
\end{array}\right] \in \mathbb{C}^{N \times A} \tag{2}
\end{gather*}
$$

- High number of learning parameters: long training time. How to reduce the learning parameters number?
- Non-constrained vs. constrained dictionary:

$$
\begin{gather*}
\mathbf{W}=\left[\begin{array}{ccc}
w_{1,1} & \cdots & w_{1, A} \\
\vdots & \ddots & \vdots \\
w_{N, 1} & \cdots & w_{N, A}
\end{array}\right] \in \mathbb{C}^{N \times A} \tag{1}\\
\stackrel{\diamond}{\mathbf{W}}=\left[\begin{array}{ccc}
g_{1} e^{-\mathrm{j} 2 \pi\left(f_{1}-\frac{N}{2} \delta f\right) \tau_{1}} & \cdots & g_{1} e^{-\mathrm{j} 2 \pi\left(f_{1}-\frac{N}{2} \delta f\right) \tau_{A}} \\
\vdots & \ddots & \vdots \\
g_{N} e^{-\mathrm{j} 2 \pi\left(f_{N}+\frac{N}{2} \delta f\right) \tau_{1}} & \cdots & g_{N} e^{-\mathrm{j} 2 \pi\left(f_{N}+\frac{N}{2} \delta f\right) \tau_{A}}
\end{array}\right] \in \mathbb{C}^{N \times A} \tag{2}
\end{gather*}
$$

- From $2 N A$ parameters to $2 N+1$ parameters to learn
- High number of learning parameters: long training time. How to reduce the learning parameters number?
- Non-constrained vs. constrained dictionary:

$$
\begin{gather*}
\mathbf{W}=\left[\begin{array}{ccc}
w_{1,1} & \cdots & w_{1, A} \\
\vdots & \ddots & \vdots \\
w_{N, 1} & \cdots & w_{N, A}
\end{array}\right] \in \mathbb{C}^{N \times A} \tag{1}\\
\stackrel{\diamond}{\mathbf{W}}=\left[\begin{array}{ccc}
g_{1} e^{-\mathrm{j} 2 \pi\left(f_{1}-\frac{N}{2} \delta f\right) \tau_{1}} & \cdots & g_{1} e^{-\mathrm{j} 2 \pi\left(f_{1}-\frac{N}{2} \delta f\right) \tau_{A}} \\
\vdots & \ddots & \vdots \\
g_{N} e^{-\mathrm{j} 2 \pi\left(f_{N}+\frac{N}{2} \delta f\right) \tau_{1}} & \cdots & g_{N} e^{-\mathrm{j} 2 \pi\left(f_{N}+\frac{N}{2} \delta f\right) \tau_{A}}
\end{array}\right] \in \mathbb{C}^{N \times A} \tag{2}
\end{gather*}
$$

- From $2 N A$ parameters to $2 N+1$ parameters to learn
- Example: $N=256$ subcarriers and $A=990$ atoms $\Rightarrow 506,880$ to 513 parameters
- High number of learning parameters: long training time. How to reduce the learning parameters number?
- Non-constrained vs. constrained dictionary:

$$
\begin{gather*}
\mathbf{W}=\left[\begin{array}{ccc}
w_{1,1} & \cdots & w_{1, A} \\
\vdots & \ddots & \vdots \\
w_{N, 1} & \cdots & w_{N, A}
\end{array}\right] \in \mathbb{C}^{N \times A} \tag{1}\\
\stackrel{\diamond}{\mathbf{W}}=\left[\begin{array}{ccc}
g_{1} e^{-\mathrm{j} 2 \pi\left(f_{1}-\frac{N}{2} \delta f\right) \tau_{1}} & \cdots & g_{1} e^{-\mathrm{j} 2 \pi\left(f_{1}-\frac{N}{2} \delta f\right) \tau_{A}} \\
\vdots & \ddots & \vdots \\
g_{N} e^{-\mathrm{j} 2 \pi\left(f_{N}+\frac{N}{2} \delta f\right) \tau_{1}} & \cdots & g_{N} e^{-\mathrm{j} 2 \pi\left(f_{N}+\frac{N}{2} \delta f\right) \tau_{A}}
\end{array}\right] \in \mathbb{C}^{N \times A} \tag{2}
\end{gather*}
$$

- From $2 N A$ parameters to $2 N+1$ parameters to learn
- Example: $N=256$ subcarriers and $A=990$ atoms $\Rightarrow 506,880$ to 513 parameters

Learning parameter number is independent of the number of atoms

- Currently, correlation of the whole dictionary with the residual and argmax search.
- Computationally intensive: How to speed up the process?
- Currently, correlation of the whole dictionary with the residual and argmax search.
- Computationally intensive: How to speed up the process?
- New idea: Use a hierarchical approach.
- Currently, correlation of the whole dictionary with the residual and argmax search. - Computationally intensive: How to speed up the process ?
- New idea: Use a hierarchical approach.

- Currently, correlation of the whole dictionary with the residual and argmax search. - Computationally intensive: How to speed up the process ?
- New idea: Use a hierarchical approach.

- Currently, correlation of the whole dictionary with the residual and argmax search. - Computationally intensive: How to speed up the process ?
- New idea: Use a hierarchical approach.

- Currently, correlation of the whole dictionary with the residual and argmax search. - Computationally intensive: How to speed up the process ?
- New idea: Use a hierarchical approach.

- Currently, correlation of the whole dictionary with the residual and argmax search. - Computationally intensive: How to speed up the process?
- New idea: Use a hierarchical approach.

- Currently, correlation of the whole dictionary with the residual and argmax search.
- Computationally intensive: How to speed up the process ?
- New idea: Use a hierarchical approach.

Correlation number is divided by $\frac{A}{2 \log _{2}(A)}$

Empirical results

- DeepMIMO configuration
- $f_{0}=3.4 \mathrm{GHz}$
- $B W=50 \mathrm{MHz}$
- $N=256$ subcarriers
- Variable SNR $_{\text {in }}$

- DeepMIMO configuration
- $f_{0}=3.4 \mathrm{GHz}$
- $B W=50 \mathrm{MHz}$
- $N=256$ subcarriers
- Variable SNR $_{\text {in }}$
- Imperfection models:
- SCO: $f_{i}=\tilde{f}_{i}+i \delta f$
- Gain imperfection: $g_{i}=\tilde{g}_{i}+n_{g_{i}}, n_{g_{i}} \sim \mathcal{N}\left(0, \sigma_{g}^{2}\right)$

- DeepMIMO configuration
- $f_{0}=3.4 \mathrm{GHz}$
- $B W=50 \mathrm{MHz}$
- $N=256$ subcarriers
- Variable SNR $_{\text {in }}$
- Imperfection models:
- SCO: $f_{i}=\tilde{f}_{i}+i \delta f$
- Gain imperfection: $g_{i}=\tilde{g}_{i}+n_{g_{i}}, n_{g_{i}} \sim \mathcal{N}\left(0, \sigma_{g}^{2}\right)$
- Online (minibatch) learning
- 10 channels per batch
- 2000 test channels

- DeepMIMO channels @3.4GHz, $N=256$ subcarriers

$\mathrm{SNR}_{\text {in }}=5 \mathrm{~dB}, \sigma_{g}^{2}=0.09, \xi=40 \mathrm{ppm}$

$$
\mathrm{NMSE}=\frac{\mathbb{E}\left[\|\hat{\mathbf{h}}-\mathbf{h}\|_{2}^{2}\right]}{\|\mathbf{h}\|_{2}^{2}}
$$

- Contributions:
- Sample complexity reduction: constrained dictionaries
- Time complexity reduction: hierarchical search
- Link to paper: https://arxiv.org/pdf/2210.06588.pdf or QR-code:

Thank you!
Have you got any questions?

Thanks

[^0]: ${ }^{1}$ Balatsoukas-Stimming and Studer, "Deep Unfolding for Communications Systems: A Survey and Some New Directions".

[^1]: ${ }^{1}$ Balatsoukas-Stimming and Studer, "Deep Unfolding for Communications Systems: A Survey and Some New Directions".

[^2]: ${ }^{1}$ Balatsoukas-Stimming and Studer, "Deep Unfolding for Communications Systems: A Survey and Some New Directions".

[^3]: ${ }^{1}$ Balatsoukas-Stimming and Studer, "Deep Unfolding for Communications Systems: A Survey and Some New Directions".

[^4]: ${ }^{1}$ Balatsoukas-Stimming and Studer, "Deep Unfolding for Communications Systems: A Survey and Some New Directions".

[^5]: ${ }^{1}$ Balatsoukas-Stimming and Studer, "Deep Unfolding for Communications Systems: A Survey and Some New Directions".

[^6]: ${ }^{1}$ Balatsoukas-Stimming and Studer, "Deep Unfolding for Communications Systems: A Survey and Some New Directions".

[^7]: ${ }^{1}$ Balatsoukas-Stimming and Studer, "Deep Unfolding for Communications Systems: A Survey and Some New Directions".
 ${ }^{2}$ Yassine and Le Magoarou, "mpNet: variable depth unfolded neural network for massive MIMO channel estimation".
 ${ }^{3}$ Mateos-Ramos et al., "Model-Driven End-to-End Learning for Integrated Sensing and Communication".
 ${ }^{4}$ Mateos-Ramos et al., "Model-Driven End-to-End Learning for Multi-Target Integrated Sensing and Communication".

