b com IETR A

/ Model-based Deep Learning for Beam Prediction based on a Channel Chart /

Taha YASSINE^{*,†}, **Baptiste CHATELIER**^{‡,†,*}, Vincent CORLAY^{‡,*}, Matthieu CRUSSIERE^{†,*}, Stéphane PAQUELET^{*}, Olav TIRKKONEN[§], Luc LE MAGOAROU^{†,*}

† Univ Rennes, INSA Rennes, CNRS, IETR-UMR 6164, Rennes, France
‡ Mitsubishi Electric R&D Centre Europe, Rennes, France
§ Department of Information and Communications Engineering, Aalto University, Finland
* b<>com, Rennes, France

baptiste.chatelier@insa-rennes.fr

• In Cell Free Massive MIMO communication systems, with different uplink and downlink frequencies, how to attribute the best BS beam to a given UE ?

14

b com IETR AMISUBISHI

< CF-Massive MIMO beam allocation >

A? Aalto University School of Electrical

< CF-Massive MIMO beam allocation >

A? Aalto University School of Electrica

What happens if the location becomes a chart location ?

Aalto University School of Electrical Engineering

Public Distribution

10

A?

-5

ò 5

Aalto University School of Electrical Engineering

Locations: GNSS

User spatial positions 850 800 User chart positions 750 5 700 0 650 600 -5 -10 -5 ò 5 550 500

A

50 100 150 200 250 300

- Locations: GNSS
- Chart/Pseudo-locations: dim. reduction of the channel

< Chart locations >

Contributions

New neural architecture for the pseudo-location to beam mapping

- New neural architecture for the pseudo-location to beam mapping
- Assessment of codebook performance versus precoder learning in cell-free systems

A

Aalto University School of Electrical

Inference: get uplink channels at BS1

A? Aalto University School of Electric Engineering

• Inference: channel charting

< Proposed scenario >

Inference: send pseudo-locations to other BSs

A?

• Inference: beam selection from pseudo-locations

Α?

Alto University School of Electrical

LBBS net. 3

• Training: CC only at BS1, LBBS networks at all BSs

• Classical approach:

< Beam allocation complexity >

• Classical approach:

• All BSs perform beam sweeping: $\mathcal{O}\left(BD\right)$

Classical approach:

A?

• CC-based approach:

- All BSs perform beam sweeping: $\mathcal{O}\left(BD\right)$

Classical approach:

Α?

• All BSs perform beam sweeping: $\mathcal{O}\left(BD\right)$

• CC-based approach:

• One BS performs channel estimation and channel charting

Classical approach:

Δ2

- All BSs perform beam sweeping: $\mathcal{O}\left(BD\right)$

• CC-based approach:

- One BS performs channel estimation and channel charting
- Then it sends the pseudo-loc. to other BSs

Classical approach:

b com IIIETR AMISUBISHI

• All BSs perform beam sweeping: $\mathcal{O}\left(BD\right)$

• CC-based approach:

- One BS performs channel estimation and channel charting
- Then it sends the pseudo-loc. to other BSs
- Total complexity: $\mathcal{O}(D+Bd), d \ll D$

Classical approach:

 $\Delta ?$

• All BSs perform beam sweeping: $\mathcal{O}\left(BD\right)$

• CC-based approach:

- One BS performs channel estimation and channel charting
- Then it sends the pseudo-loc. to other BSs
- Total complexity: $\mathcal{O}\left(D+Bd\right), d \ll D$

Huge complexity reduction

 Manifold learning methods such as ISOMAP are computationally intensive in out-ofsample scenarios Manifold learning methods such as ISOMAP are computationally intensive in out-ofsample scenarios → use of the method proposed in¹ with a phase insensitive distance².

< Channel charting procedure >

¹Yassine et al., "Leveraging triplet loss and nonlinear dimensionality reduction for on-the-fly channel charting". ²Le Magoarou, "Efficient Channel Charting via Phase-Insensitive Distance Computation".

 Manifold learning methods such as ISOMAP are computationally intensive in out-ofsample scenarios → use of the method proposed in¹ with a phase insensitive distance².

$$\{ \mathbf{h}_{1,n} \}_{n=1}^{N} \xrightarrow{\text{ISOMAP}} \{ \mathbf{z}_{1,n} \}_{n=1}^{N}$$
$$\left(\mathbf{D} \triangleq (\mathbf{h}_{1,1} \cdots \mathbf{h}_{1,N}) \in \mathbb{C}^{N_a \times N} \right) \qquad \qquad \left(\mathbf{Z} \triangleq (\mathbf{z}_{1,1} \cdots \mathbf{z}_{1,N}) \in \mathbb{C}^{d \times N} \right)$$

< Channel charting procedure >

¹Yassine et al., "Leveraging triplet loss and nonlinear dimensionality reduction for on-the-fly channel charting". ²Le Magoarou, "Efficient Channel Charting via Phase-Insensitive Distance Computation".

 Manifold learning methods such as ISOMAP are computationally intensive in out-ofsample scenarios → use of the method proposed in¹ with a phase insensitive distance².

$$\{\mathbf{h}_{1,n}\}_{n=1}^{N} \xrightarrow{\text{ISOMAP}} \{\mathbf{z}_{1,n}\}_{n=1}^{N}$$
$$\left(\mathbf{D} \triangleq (\mathbf{h}_{1,1}\cdots\mathbf{h}_{1,N}) \in \mathbb{C}^{N_{a} \times N}\right) \qquad \left(\mathbf{Z} \triangleq (\mathbf{z}_{1,1}\cdots\mathbf{z}_{1,N}) \in \mathbb{C}^{d \times N}\right)$$

Out-of-sample channel: $\mathbf{h}_{1,j}$

$$\mathbf{h}_{1,j} \rightarrow \boxed{\mathbf{D}^{\mathrm{H}}} \rightarrow \boxed{|\cdot|} \rightarrow \boxed{\mathrm{HT}_{K}} \rightarrow \boxed{\frac{\cdot}{\|\cdot\|_{1}}} \rightarrow \boxed{\mathbf{Z}} \rightarrow \mathbf{z}_{1,j}$$

 z_{1,j} can be seen as a convex combination of the pseudo-locations associated to the <u>K most correlated channels with</u> h_{1,j}.

¹Yassine et al., "Leveraging triplet loss and nonlinear dimensionality reduction for on-the-fly channel charting". ²Le Magoarou, "Efficient Channel Charting via Phase-Insensitive Distance Computation".

Public Distribution

< Channel charting procedure >

< Neural architectures: classification >

Training loss: multi-class cross entropy

$$\mathcal{L} = -\sum_{u=1}^{\mathcal{B}} \mathbf{p}_{u}^{\mathrm{T}} \log_{2} \left(\hat{\mathbf{p}}_{u} \right)$$
$$\mathbf{p}_{u} \in \mathbb{R}^{N_{b}}, \ (\mathbf{p}_{u})_{j} = 1 \Leftrightarrow i^{\star} = j \text{ for UE } u.$$

< Neural architectures: classification >

Training loss: multi-class cross entropy

$$\mathcal{L} = -\sum_{u=1}^{\mathcal{B}} \mathbf{p}_{u}^{\mathrm{T}} \log_{2} \left(\hat{\mathbf{p}}_{u} \right)$$
$$\mathbf{p}_{u} \in \mathbb{R}^{N_{b}}, \ (\mathbf{p}_{u})_{j} = 1 \Leftrightarrow i^{\star} = j \text{ for UE } u.$$

• $\mathbf{x} = \begin{bmatrix} \cos(2\pi \mathbf{Bz}) \\ \sin(2\pi \mathbf{Bz}) \end{bmatrix}, \mathbf{B} \in \mathbb{R}^{F \times d}$ • $\mathbf{B} \sim \mathcal{N} \left(\mathbf{0}_F, \sigma^2 \mathbf{Id}_F \right)$ • $d = 5, F = 200, T = 64, N_b = 256$

b com

$\mathbf{RFF} \quad \mathbf{z} \in \mathbb{R}^{d} \longrightarrow \mathbb{RFF} \quad \mathbf{x} \vdash \mathbf{rc} \longrightarrow \mathbb{ReLU} \longrightarrow \mathbb{Pc} \longrightarrow \mathbb{ReLU} \longrightarrow \mathbb{Pc} \longrightarrow \mathbb{Softmax} \longrightarrow \hat{\mathbf{p}} \in \mathbb{R}^{N_{b}} \qquad \text{Train}$ $2D \rightarrow T \qquad T \rightarrow T \qquad T \rightarrow N_{b} \qquad \qquad \mathcal{L} = -\sum_{u=1}^{L} \mathbb{E} \xrightarrow{u=1}^{u} \mathbb$

 $T \rightarrow N_{\mu}$

Training loss: multi-class cross entropy

$$\mathcal{L} = -\sum_{u=1}^{\mathcal{B}} \mathbf{p}_u^{\mathrm{T}} \log_2(\hat{\mathbf{p}}_u)$$
$$\mathbf{p}_u \in \mathbb{R}^{N_b}, \ (\mathbf{p}_u)_j = 1 \Leftrightarrow i^* = j \text{ for UE } u.$$

• $\mathbf{x} = \begin{bmatrix} \cos(2\pi \mathbf{Bz}) \\ \sin(2\pi \mathbf{Bz}) \end{bmatrix}, \mathbf{B} \in \mathbb{R}^{F \times d}$ • $\mathbf{B} \sim \mathcal{N} \left(\mathbf{0}_F, \sigma^2 \mathbf{Id}_F \right)$ • $d = 5, F = 200, T = 64, N_b = 256$

 $d \rightarrow 2D$ $2D \rightarrow T$ $T \rightarrow T$

 Baseline: 1-NN → the best beam for a given test pseudo-loc. is the optimal beam of the closest train pseudo-loc.

- Two different scenes:
 - Urban canyon with DeepMIMO³
 - Paris, Étoile neighborhood with Sionna⁴

³Alkhateeb, "DeepMIMO: A Generic Deep Learning Dataset for Millimeter Wave and Massive MIMO Applications". ⁴Hoydis et al., "Sionna: An Open-Source Library for Next-Generation Physical Layer Research".

com III ETR A MISUBISH A? And University Electric

- Two different scenes:
 - Urban canyon with DeepMIMO³
 - Paris, Étoile neighborhood with Sionna⁴
- Radio parameters:
 - 2 BSs: UPA $8x8 \Rightarrow N_a = 64$
 - 2D-DFT codebook: $N_b = 4N_a$
 - UEs: mono-antenna
 - Uplink: 3.5GHz
 - Downlink: 28GHz
 - Multicarrier: 16 subcarriers over 20MHz bandwidth

³Alkhateeb, "DeepMIMO: A Generic Deep Learning Dataset for Millimeter Wave and Massive MIMO Applications". ⁴Hoydis et al., "Sionna: An Open-Source Library for Next-Generation Physical Layer Research".

A?

Aalto University School of Electrical

Neighbours: 5% of dataset size

TW	СТ	KS
0.973	0.929	0.471

< Charting: DeepMIMO scene, d = 5 >

• Neighbours: 5% of dataset size

TW	СТ	KS
0.960	0.952	0.292

Chart shape can be explained⁵

⁵Yassine et al., Optimizing Multicarrier Multiantenna Systems for LoS Channel Charting.

A?

DeepMIMO

A?

Aalto University School of Electrical Engineering

Sionna

• Pseudo-locs.

DeepMIMO	RFF	MLP	1-NN
Top 1 acc. (%)	66 .07	56.06	61.40
Top 2 acc. (%)	84.87	76.97	81.31
Top 3 acc. (%)	90.66	85.09	88.77
Sionna	RFF	MLP	1-NN
Sionna Top 1 acc. (%)	RFF 66.07	MLP 54.07	1-NN 69.73
Sionna Top 1 acc. (%) Top 2 acc. (%)	RFF 66.07 75.13	MLP 54.07 65.00	1-NN 69.73 79.47

• Pseudo-locs.

DeepMIMO	RFF	MLP	1-NN
Top 1 acc. (%)	$\boldsymbol{66.07}$	56.06	61.40
Top 2 acc. (%)	84.87	76.97	81.31
Top 3 acc. (%)	90.66	85.09	88.77
Sionna	RFF	MLP	1-NN
Top 1 acc. (%)	66.07	54.07	69.73
Top 2 acc. (%)	75.13	65.00	79.47
Top 3 acc. (%)	78.27	69.07	81.87

b com IIIETR Allectric A? Added University

• True locs.

DeepMIMO	RFF	MLP	1-NN
Top 1 acc. (%)	74.53	34.15	71.08
Top 2 acc. (%)	91.21	46.61	88.32
Top 3 acc. (%)	95.77	54.39	94.33
Sionna	RFF	MLP	1-NN
Top 1 acc. (%)	82.53	42.40	82.07
Top 2 acc. (%)	88.40	49.93	88.27
Top 3 acc $(\%)$	89.87	53.80	89.87

DeepMIMO

Sionna

Public Distribution

	RFF	MLP	1-NN (ball-tree)	1-NN (brute force)
Execution time (ns)	602.6	145.8	4928.2	10913.9

A?

	RFF	MLP	1-NN (ball-tree)	1-NN (brute force)
Execution time (ns)	602.6	145.8	4928.2	10913.9

• GPU implementation of RFF/MLP: very fast inference times

 $\Delta ?$

	RFF	MLP	1-NN (ball-tree)	1-NN (brute force)
Execution time (ns)	602.6	145.8	4928.2	10913.9

- GPU implementation of RFF/MLP: very fast inference times
- Optimized 1-NN is interesting: information in pseudo-locations work well with very simple ML methods

	RFF	MLP	1-NN (ball-tree)	1-NN (brute force)
Execution time (ns)	602.6	145.8	4928.2	10913.9

- GPU implementation of RFF/MLP: very fast inference times
- Optimized 1-NN is interesting: information in pseudo-locations work well with very simple ML methods
- When considering online learning, parametric methods (i.e. RFF/MLP) would outperform non-parametric methods (i.e. 1-NN) in terms of inference complexity

- From a pseudo-location learn a precoder $\mathbf{w} \in \mathbb{C}^{N_a}$
 - Pseudo-location based beamforming

- From a pseudo-location learn a precoder $\mathbf{w} \in \mathbb{C}^{N_a}$
 - Pseudo-location based beamforming
- Training loss: correlation-based (between precoder and downlink channel)

$$\mathcal{L} = 1 - \frac{1}{\mathcal{B}} \sum_{u=1}^{\mathcal{B}} \frac{\left|\mathbf{w}_{u}^{\mathsf{H}} \mathbf{g}_{u}\right|^{2}}{\|\mathbf{g}_{u}\|_{2}^{2}}$$

(1)

- From a pseudo-location learn a precoder $\mathbf{w} \in \mathbb{C}^{N_a}$
 - Pseudo-location based beamforming
- Training loss: correlation-based (between precoder and downlink channel)

$$\mathcal{L} = 1 - \frac{1}{\mathcal{B}} \sum_{u=1}^{\mathcal{B}} \frac{\left| \mathbf{w}_{u}^{\mathsf{H}} \mathbf{g}_{u} \right|^{2}}{\| \mathbf{g}_{u} \|_{2}^{2}}$$
(1)

• Evaluation metric: normalized correlation between precoder and downlink channel:

$$\eta = \frac{\left|\mathbf{w}^{\mathsf{H}}\mathbf{g}\right|^{2}}{\left\|\mathbf{g}\right\|_{2}^{2}} \tag{2}$$

DeepMIMO

Sionna

A? Aalto University School of Electrica

< Correlation maps: BS2 >

A?

Aalto University School of Electrical Engineering

• Contributions:

- Contributions:
 - Pseudo-locations can be used to select the best beam at another BS than the one used for charting.

- Contributions:
 - Pseudo-locations can be used to select the best beam at another BS than the one used for charting.
 - Better performance when using RFF networks in the pseudo-location to beam mapping.

- Contributions:
 - Pseudo-locations can be used to select the best beam at **another** BS than the one used for charting.
 - Better performance when using RFF networks in the pseudo-location to beam mapping.
 - Learning a precoder from pseudo-locations yields better performance than using a 2D-DFT codebook.

- Contributions:
 - Pseudo-locations can be used to select the best beam at **another** BS than the one used for charting.
 - Better performance when using RFF networks in the pseudo-location to beam mapping.
 - Learning a precoder from pseudo-locations yields better performance than using a 2D-DFT codebook.
 - Information in the chart also works very well with very simple machine learning methods (1-NN).

- Contributions:
 - Pseudo-locations can be used to select the best beam at **another** BS than the one used for charting.
 - Better performance when using RFF networks in the pseudo-location to beam mapping.
 - Learning a precoder from pseudo-locations yields better performance than using a 2D-DFT codebook.
 - Information in the chart also works very well with very simple machine learning methods (1-NN).
- Future work:

- Contributions:
 - Pseudo-locations can be used to select the best beam at **another** BS than the one used for charting.
 - Better performance when using RFF networks in the pseudo-location to beam mapping.
 - Learning a precoder from pseudo-locations yields better performance than using a 2D-DFT codebook.
 - Information in the chart also works very well with very simple machine learning methods (1-NN).
- Future work:
 - Pseudo-locations have only been obtained under the channel charting point of view.

- Contributions:
 - Pseudo-locations can be used to select the best beam at **another** BS than the one used for charting.
 - Better performance when using RFF networks in the pseudo-location to beam mapping.
 - Learning a precoder from pseudo-locations yields better performance than using a 2D-DFT codebook.
 - Information in the chart also works very well with very simple machine learning methods (1-NN).
- Future work:
 - Pseudo-locations have only been obtained under the channel charting point of view.
 - Would using an auto-encoders cause a performance drop ?
 - End-to-end training for channel charting and neural network.

Thank you! Questions?

< Correlation maps: BS2 >

Aalto University School of Electrical Engineering

A

Thanks